Functionalized Isocyanides as Ligands. Synthesis of 2-(Chloromethy1)- and 2- (1odomethyl)phenyl Isocyanides and Their Transition-Metal Complexes

RINO A. MICHELIN,* GIACOMO FACCHIN, and PAOLO UGUAGLIATI

Received March 30, *I983*

Isocyanides of the general structure 2-(XCH₂)C₆H₄NC (X = Cl, 2-(chloromethyl)phenyl isocyanide (CN⁻CH₂Cl); X = I, 2-(iodomethyl)phenyl isocyanide $(CN\widehat{CH}_2I)$) have been prepared through a four-step synthesis starting from 2-(chloromethy1)benzoyl chloride and proceeding through successive formation of the corresponding azide, isocyanate, and formamide. The iodo isocyanide was obtained from the parent chloride by halide exchange with NaI in acetone. Such ligands, which contain both isocyanide and alkyl halide (CH₂X) functions, can act as monofunctional or bifunctional ligands. Reactions involving the isocyanide function lead to mononuclear complexes of the type $M(CO)_{5}(CN^{\text{C}}H_{2}X)$ (M = Cr, $W; X = Cl, I$), $cis-MCl_2(PR_3)(CN²CH_2Cl)$ ($M = Pd, Pt; PR_3 = PPh_3, PMePh_2, PMe_2Ph$), and $cis-MCl_2(CN²CH_2Cl)$. Reaction of CN CH₂I with $[Pt(PMePh_2)Cl_2]_2$ yields a mixture of PtClI(PMePh₂)(CN CH₂Cl) (major product), PtCl₂(PMePh₂)(CN⁻CH₂Cl), and PtI₂(PMePh₂)(CN⁻CH₂I). Insertion reaction of CN⁻CH₂Cl into the Pt-H bond in *trans-PtHCl(PPh₃)*₂ gives the formimidoyl complex *trans-PtCl(PPh₃)*₂(CH= \overline{N} CH₂Cl). In some of these mononuclear isocyanide derivatives the dangling $CH₂I$ function shows some typical reactions of halide displacement by aromatic amines or metal carbonyl anions, leading to new organometallic o-aminobenzyl isocyanide complexes of the type M(CO)5- $(CN^{\dagger}CH_2NH\text{-}p\text{-}C_6H_4Me)$ (M = Cr, W) and homo- and heterobinuclear derivatives of the types M(CO)₅(CN CH₂)- $M'Cp(CO)_{3}$ ($M = \tilde{C}r$, $M' = Mo$; $M = W$, $M' = Mo$; $M = M' = W$) and $W(CO)_{5}(CN\tilde{C}H_{2})Mn(\tilde{C}O)_{5}$. The $\tilde{C}H_{2}I$ function in M(CO)₅(CN⁻CH₂I) (M = Cr, W) also undergoes oxidative addition to Pd(0) and Pt(0) complexes, affording the binuclear complexes $M(CO)_{3}(CN^{\circ}CH_{2})$ -trans-M'I(PPh₃)₂ (M = Cr, W, M' = Pt; M = Cr, M' = Pd). Oxidative addition of the uncoordinated CN CH₂I to Pt(PPh₃)₂(C₂H₄) leads instead to the dimeric Pt(II) derivative

Isocyanides with functional substituents such as alcohols,' esters,^{2,3} ketones,^{4,5} amides,⁶ nitriles,³ sulfones,^{4,7} amines,⁸ perhaloalkyls,⁹ and α -acetylenic C atoms¹⁰ have been reported in the recent past. Some of these owe their existence to stabilization via metal coordination, $4,8-10$ whereas several others are stable enough to be isolated as such. $1-3.5-7$ The interest in the transition-metal coordination chemistry of these ligands stems from the role of the function that can (i) interact directly with the isocyanide¹ or (ii) activate the C-H bond of the adjacent methylene group to produce α -metalated isocyanides^{2,7} or metal-carbon bonds.^{3,5,6} They then undergo intermolecular nucleophilic attack on the coordinated isocyanide in the presence of 1,3-dipolarophiles or intramolecular migratory rearrangement involving the free $-N=$ C group, respectively. It thus appears that the nature of the funtion may dictate the overall properties of the metal-ligand system.

In order to further investigate the synthesis of such ligands, their coordination ability, and their reactivity toward transition metals as related also to the electronic and/or steric effects

- (1) Bartel, K.; Fehlhammer, W. P. Angew. Chem., Int. Ed. Engl. 1974, 13,
- (2) Fehlhammer, W. P.; Bartel, K.; Petri, W. *J. Organomet. Chem.* **1975,** *87,* C34.
- (3) Ito, Y.; Inubushi, Y.; Sugaya, T.; Kobayashi, K.; Saegusa, T. *Bull. Chem. SOC.* Jpn. **1978,** *51,* 1186.
- (4) Fehlhammer, W. P.; Mayr, A.; Olgemöller, B. Angew. Chem., Int. Ed. *Engl.* **1975,** *14,* 369.
- **(5)** Ito, Y.; Kobayashi, K.; Saegusa, T. J. Org. *Chem.* **1979,** *44,* 2030.
- (6) Ito, Y.; Kobayashi, K.; Saegusa, T. *Tetrahedron* Lett. **1979,** *12,* 1039. **(7)** Grundy, K. R.; Roper, W. R. J. *Organomet. Chem.* **1975,** *91,* C61.
- **(8)** Fehlhammer, W. P.; BuraEas, P.; Bartel, K. *Angew. Chem., Int. Ed. Engl.* **1977,** *16,* **707.**
- **(9)** Fehlhammer, W. P.; Degel, F. *Angew. Chem., Int. Ed. Engl.* **1979,** *18, 75.*
- (10) Fehlhammer, W. P.; Degel, F.; Stolzenberg, H. *Angew. Chem., Int. Ed. Engl.* **1981,** *20,* 214.

Introduction of the substituent, we have prepared isocyanides of the following structure:

 $X = \text{Cl}$, 2-(chloromethyl)phenyl isocyanide **(CN** CH_2Cl) $X = I$, 2-(iodomethyl)phenyl isocyanide (CN CH₂I)

These ligands, which contain the isocyanide function $(N \equiv$ C) and the alkyl halide function $(CH₂X)$, can potentially display the reactivity patterns peculiar to each group. **As** a consequence, their behavior can be depicted as in compounds A-C. For example, species of type **A** involve simple coor-

$$
M - c \equiv N \qquad \text{CH}_2 X \qquad M - c + \sum_{N \equiv c} N \equiv c \qquad M - c \equiv N \qquad \text{CH}_2 - [M]
$$

dination of the isocyanide end, whereas **species** of type **B** might derive from halide displacement by metal carbonyl anions or oxidative addition to metal complexes in low oxidation state. With an appropriate choice of the metal substrate, we have investigated the ability of these ligands to act either as monodentate agents to give "open-chain" mononuclear compounds of the type A and B or as bifunctional entities to give homoand heterobinuclear species of type C. Of course, derivatives such as **A** and **B** can be potential precursors of C. Furthermore, the $\text{CN}^\dagger \text{CH}_2X$ ligands are isoelectronic with the corresponding o-cyanobenzyl halides whose coordination chemistry has been thoroughly investigated¹¹ and may well serve

^{(11) (}a) Ros, R.; Renaud, J.; Roulet, R. J. Organomet. Chem. 1974, 77, C4.

(b) Ibid. 1975, 87, 379. (c) Ibid. 1976, 104, 271. (d) Ibid. 1976, 104, 393. (e) Ros, R.; Michelin, R. A.; Boschi, T.; Roulet, R. Inorg. Chim.

Ac

for comparison purposes in establishing general reactivity patterns.

Experimental Section

General Procedures. All reactions were carried out under an atmosphere of dry nitrogen or argon. N,N-Dimethylformamide (DMF) was distilled under N_2 from BaO; tetrahydrofuran (THF), benzene, toluene, diethyl ether, and 1,2-dimethoxyethane (DME) were distilled under $N₂$ from sodium benzophenone ketyl. 1,2-Dichloroethane (DCE) was dried and distilled under N_2 from CaH₂. Acetone was dried over CaSO₄ and degassed before use. All other solvents were of reagent grade purity and were dried over molecular sieves without further purification.

IR spectra were recorded on a Perkin-Elmer 597 spectrophotometer. ¹H, ³¹P(¹H), and ¹³C(¹H) NMR spectra were run on a Varian FT-80A spectrometer. ¹³C NMR solutions contained Cr(acac)₃ (\sim 0.02 M, acac = acetylacetonate) to reduce data collection time. In all the NMR spectra, negative chemical shifts are upfield from the reference used. Mass spectra were recorded on a VG ZAB 2F spectrometer.

Molecular weight measurements were determined on a Knauer osmometer using DCE as solvent.

Melting points were taken on a hot plate apparatus and are uncorrected.

Elemental analyses were performed by the Institute of Analytical Chemistry, University of Padua.

Starting Materials. 2-(Chloromethyl) benzoyl chloride, sodium azide, and lithium aluminum tri-tert-butoxyhydride, $LiAlH(O-t-Bu)_{3}$, were purchased from Fluka and used without further purification. The carbonyls $M(CO)_6$ (M = Cr, Mo, W) and $Mn_2(CO)_{10}$ were Alfa products and used as purchased. The complexes $[M(CO),I][NEt_4]^{12}$ $(M = Cr, W)$, $Pt(PPh₃)₂(C₂H₄)¹³ Pd₂(dba)₃$ ²CHCl₃¹⁴ (dba = dibenzylideneacetone), $(\widehat{COD})\widehat{PtCl}_2$ ¹⁵ (\widehat{COD} = 1,5-cyclooctadiene), $=$ PPh₃, PMePh₂, PMe₂Ph), and *trans*-PtHCl(PPh₃)₂¹⁸ were prepared according to literature procedures. $PdCl₂(MeCN)₂$ was obtained as a yellow solid in 90% yield by refluxing PdCl₂ in acetonitrile until dissolution, followed by precipitation with petroleum ether. Complexes of the type $[Pd(PR_3)Cl_2]_2$ (PR₃ = PPh₃, PMePh₂, PMe₂Ph) were prepared in about 80% yield by refluxing equimolar amounts of $PdCl₂(MeCN)₂$ and the phosphine for ca. 2-3 h under N₂ in DCE, followed by precipitation with Et_2O/n -hexane. *Caution*: All the operations concerning the preparation of the ligands were carried out under a well-ventilated fume hood and with use of disposable gloves. Some compounds, in particular the formamide and the isocyanides, proved to be strong eye and skin irritants. $[MCp(CO)₃]$ ⁻¹⁶ (M = Mo, W; Cp = η^5 -C₅H₅), $[Pt(PR₃)Cl₂]$ ₂¹⁷ (PR₃

Synthesis of Ligands. 2-(Chloromethyl)benzoyl Azide. A three-neck round-bottom flask equipped with mechanical stirrer, thermometer, and inlet-outlet for N_2 was charged with DMF (150 mL) and the system cooled to -5 °C with an ice-NaCl bath. 2-(Chloromethyl)benzoyl chloride (15 mL, 20.22 **g,** 0.107 mol) was added in one portion and the solution vigorously stirred for 1 h. Sodium azide (7.30 **g,** 0.1 12 mol) was then added in small portions at such a rate that the temperature never exceeded -5 °C. After the addition was complete, the reaction mixture was stirred for an additional 2 h and then allowed to come to room temperature. It was poured into ice water (250 mL) and the acyl azide extracted with C_6H_6 (3 \times 150 mL). The benzene layer was subsequently extracted with ice-cold water (3 **X** 100 mL) and then dried over anhydrous $Na₂SO₄$. The yield based on the isocyanate was generally quantitative.

Since the azide was immediately used in the subsequent transformation to the isocyanate, no particular effort was made to isolate it in the routine preparations. However, a pure sample of the azide was obtained as follows. Evaporation to dryness of an aliquot portion of the benzene solution at 5 °C gave an oil that dissolved in Et₂O/n-pentane (1:1 mixture, 30 mL) and cooled to -15 °C. White crystals of the azide formed, which are deliquescent and decompose

-
-
- (12) Abel, E. W.; Butler, I. S.; Reid, J. G. J. Chem. Soc. 1963, 2068.
(13) Cook, C. D.; Jauhal, G. S. *Inorg. Nucl. Chem. Lett.* 1967, 2, 31.
(14) Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organome
- (15) Clark, H. *C.;* Manzer, L. **E.** *J. Orgunomet. Chem.* **1973,** *59,* 411.
-
- (16) Michelin, R. A.; Angelici, R. J. *Inorg. Chem.* **1980,** *19,* 3850. **(17)** Smithies, A. C.; Schmidt, P.; Orchin, M. *Inorg. Synth.* **1970,** *12,* 240.
- (18) Bailar, J. *C.,* **Jr.;** Itatani, H. *Inorg. Chem.* **1965,** *4,* 1618.

slowly to the isocyanate at room temperature. IR (C_6H_6) : $\nu(N_3)$ 2125 **s**, ν (**C**=**O**) 1685 **s** cm⁻¹. ¹H NMR (CDCl₃; Me₄Si): δ (**CH**₂) 4.85 **S.**

Z-(Chloromethyl)phenyl Isocyanate. The solution of the azide in C_6H_6 was heated slowly with stirring from room temperature to 80 ^oC over a period of 4 h and then at reflux for 1 h. It was then taken to dryness under reduced pressure to give 15.0 **g** (0.089 mol) of the isocyanate as a thick oil; yield 84% (based on the starting benzoyl chloride). IR (C_6H_6) : $\nu(NCO)$ 2265 vs cm⁻¹. ¹H NMR (CDCl₃; Me_4Si : δ (CH₂) 4.64 s.

(2-(Chloromethyl)phyI)formamide. The isocyanate (35.10 *g,* 0.21 mol) was transferred into a dropping funnel with 200 mL of THF, and the resultant mixture was added slowly (3 h) to a vigorously stirred solution of LiAlH(O-t-Bu), (68.9 g, 0.27 mol) in THF (300 mL) previously cooled to -15 °C with an ice-NH₄Cl bath. After 3 h of additional stirring, 50% HCOOH (180 mL) was added in 10 min with fast mechanical stirring. The reaction mixture was allowed to reach room temperature, giving a pale yellow clear solution that was taken up with Et₂O (800 mL) and treated with 0.05 N HCl (2 \times 300 mL), 1 N HCl (1×300 mL), and a saturated solution of Na₂CO₃ ($2 \times$ 300 mL). It was then washed with H_2O (3 \times 200 mL) and dried over anhydrous MgS04. The ethereal solution was taken to dryness to yield the crude formamide, which was recrystallized from $CH_2Cl_2/Et_2O/n$ -hexane: yield 27 g (76%); mp 90-91 °C. IR (Nujol mull): v(NH) 3230 m, v(C=O) 1660 vs, u(C-Cl) 665 **s** cm-I. 'H NMR (CD₂Cl₂): δ (CH₂) 4.64 s, δ (CHO) 8.60 s. Anal. Calcd for C8H8NCIO: C, 56.65; H, 4.75; N, 8.26; C1, 20.90. Found: C, 56.29; H, 4.91; N, 8.23; C1, 21.39,

2-(Chloromethyl)phenyl Isocyanide (CN^CH₂Cl). A three-neck round-bottom flask equipped with mechanical stirrer, dropping funnel, and inlet-outlet for N_2 was charged with the formamide (14.1 g , 0.083) mol) in DMF (200 mL), and the resultant mixture was cooled to -50 °C with a dry ice-acetone bath. A solution of $S OCl₂$ (6.35 mL, 10.35 **g,** 0.087 mol) in DMF (50 mL) was added dropwise over a period of 30 min at such a rate that the temperature never exceeded -50 ^oC. After the addition was complete, the reaction mixture was warmed to -45 °C and anhydrous $Na₂CO₃$ (19.80 g, 0.18 mol) was added in one portion. The dry ice-acetone bath was removed and the reaction mixture stirred overnight. It was then poured into ice water (500 mL) and extracted with Et₂O (2×350 mL). The ethereal layer was extracted with ice water (2 **X** 300 mL) and dried over anhydrous Na2S04. Filtration and evaporation to dryness gave a pale yellow solid that was sublimed at 55 $^{\circ}$ C (1 \times 10⁻² torr) onto a dry ice-cold probe to give 9.0 g $(72.3\% \text{ yield})$ of the isocyanide (mp 48-50 °C) dec), which was stored under N_2 in the dark at -15 °C. Anal. Calcd for C₈H₆NCl: C, 63.38; H, 3.99; N, 9.24; Cl, 23.38. Found: C, 62.80; H, 3.68; N, 9.02; C1, 22.78.

2-(Iodomethyl)phenyl Isocyanide (CNCH₂I). To a solution of NaI (37.5 **g,** 0.25 mol) in acetone (250 mL) was added a solution of $CNTCH₂Cl$ (7.5 g, 0.05 mol) in acetone (70 mL) dropwise over a period of 1 h at room temperature. After the addition was complete, the reaction mixture was stirred for an additional 4 h, giving a white precipitate of NaC1. It was then concentrated under reduced pressure to half its volume, $Et₂O$ (300 mL) was added, and the resultant mixture was quickly filtered on a glass frit and taken to dryness. The residue was dissolved in the minimum amount of benzene, and the resultant mixture was filtered and chromatographed on a column of silica gel (40 \times 3 cm) with Et₂O as eluant. The yellow band formed was collected under N_2 and taken to dryness. The pale yellow crude product (10.6 g, 87.2%) could be sublimed (68 °C (1 \times 10⁻² torr)) onto a dry ice-cold probe to give the white isocyanide with only a slight decrease in yield (mp 67-68 $^{\circ}$ C dec). It was then stored under N_2 in the dark at -15 °C. Anal. Calcd for C_8H_6NI : C, 39.53; H, 2.49; N, 5.76; I, 52.21. Found: C, 39.90; H, 2.41; N, 5.72; I, 51.83.

Preparation of Complexes. $Cr(CO)_{5}(CN\widehat{CH}_{2}Cl)$ (1). To a suspension of $[Cr(CO)_5]$ [NEt₄] (9.0 g, 20.0 mmol) in acetone (130 mL) at 0 °C was added a 0.95 M acetone solution of AgBF₄ (22 mL, 20.9 mmol) diluted in acetone (50 mL) dropwise over a period of 20 min. After the addition was complete, the mixture was quickly filtered and the dark orange solution treated dropwise at 0° C with a solution of CN^{CH₂Cl (2.80 g, 18.5 mmol) in acetone (70 mL). After being} stirred for an additional 20 min, the yellow-orange solution was allowed to come to room temperature and evaporated to dryness under reduced pressure. The residue was extracted with $Et₂O$ (3 \times 100 mL), filtered, taken to dryness, and taken up with the minimum amount of $CH₂Cl₂$, and the resultant mixture was chromatographed on a silica gel column

Functionalized Isocyanides as Ligands

 $(50 \times 3 \text{ cm})$ with Et₂O as eluant. The pale yellow band formed was collected and n-hexane (60 mL) added. **On** concentration and cooling, pale yellow crystals of the compound were obtained, which were filtered off and dried under vacuum: mp 73-75 °C; yield 5.1 g or 80.2% (based on the isocyanide). Anal. Calcd for $C_{13}H_6NO_5ClCr$: C, 45.43; H, 1.76; N, 4.08; C1, 10.32. Found: C, 45.80; H, 1.79; N, 4.12; CI, 9.83.

 $W(CO)_{5}(CN\widehat{CH}_{2}Cl)$ (2). This compound was prepared by a procedure similar to that used for complex **1** starting from [W- $(CO)_{5}I][NEt_{4}]$ (5.81 g, 10.0 mmol), 0.95 M AgBF₄ (10 mL, 10.5) mmol), and CN CH2C1 **(1.45 g,** 9.57 mmol): yield 3.2 g (70.3%); mp 72-73 °C dec. Anal. Calcd for C₁₃H₆NO₅ClW: C, 32.80: H, 1.27; N, 2.94; C1, 7.45. Found: C, 33.07; H, 1.32; N, 2.98; C1, 7.21.

 $Cr(CO)_{5}(CN\widehat{C}H_{2}I)$ (3). Method A. This procedure was similar to that reported for 1 starting from $[Cr(CO),I][NEf_{d}]$ (4.53 g, 10.0) mmol), 1.0 M AgBF₄ (10 mL, 10.0 mmol), and CN CH₂I (2.43 g, 10.0 mmol): yield of the yellow product 3.5 **g** (82%); mp 98-99 *OC.* Anal. Calcd for C₁₃H₆NO₅ICr: C, 35.88; H, 1.39; N, 3.22; I, 29.16. Found: C, 36.04; H, 1.48; N, 3.30; **I,** 28.83.

Method B. Complex **1** (3.5 g, 10.2 mmol) was reacted with a solution of NaI (9.0 g, 60.0 mmol) in acetone (90 mL) at room temperature overnight. The reaction mixture was taken to dryness and extracted with C_6H_6 (80 mL). The benzene solution was concentrated to small volume and chromatographed on a silica gel column $(40 \times 3$ cm) with Et₂O as eluant. The yellow band developed was collected and evaporated to small volume and n-hexane (30 mL) added. On cooling to -10 °C, a yellow precipitate of the compound formed; yield 3.8 **g** (85.6%).

 $W(CO)_{5}(CN\widehat{CH}_{2}I)$ (4). This compound was prepared by both methods A and B as described for **3** with 73 or 65% yield, respectively; mp 99-100 °C. Anal. Calcd for C₁₃H₆NO₅IW: C, 27.54; H, 1.06; N, 2.47; I, 22.38. Found: C, 27.59; H, 1.00; N, 2.40; I, 21.92.

 cis -MCl₂(PR₃)(CN⁻CH₂Cl) (PR₃ = PPh₃, PMePh₂, PMe₂Ph; M = **Pd (5-7), Pt (8-10)).** All these complexes, which analyzed well for the proposed structures, were prepared by a standard procedure that is described for compound 6. A solution of $\text{CN} \text{CH}_2\text{Cl}$ (0.75) g, 4.95 mmol) in C_6H_6 (30 mL) was added dropwise with stirring over a period of 30 min to a suspension of $[Pd(PMePh₂)Cl₂]$ ₂ (1.83) g, 2.42 mmol) in C_6H_6 (30 mL) at room temperature. A yellow solution was obtained from which an off-white solid began to precipitate after 1 h. The reaction mixture was reduced to small volume and $Et₂O$ (40 mL) added. The solid was filtered off and recrystallized from CH₂Cl₂/Et₂O: yield 1.9 g (79.8%); mp 168-169 °C dec. Anal. Calcd for $C_{21}H_{19}NCl_3PPd$: C, 47.67; H, 3.62; N, 2.65; Cl, 20.10. Found: C, 48.14; H, 3.63; N, 2.51; C1, 19.81.

The melting points of the other complexes are as follows: *5,* 199-201 *OC* dec; **7,** 151-152 OC dec; **8,** 208-210 *OC;* **9,** 157-158 *OC:* **10,** 135-136 *OC.*

cis-PdCl₂(CN⁻CH₂Cl)₂ (11). To a solution of PdCl₂(MeCN)₂ (1.3) g, 5.0 mmol) in C_6H_6 (30 mL) was added a solution of CN CH₂Cl (1.54 g, 10.2 mmol) in C_6H_6 (50 mL) dropwise at room temperature with stirring over a period of 30 min. The reaction mixture was stirred for an additional 2 h. Et₂O (100 mL) was added and the white solid filtered off and dried under vacuum: yield 4.2 g (87.5%); mp 195-198 ^oC dec. Anal. Calcd for C₁₆H₁₂N₂Cl₄Pd: C, 39.99; H, 2.52; N, 5.83; C1, 29.51. Found: C, 40.18; H, 2.54; N, 5.77; C1, 29.30.

 c **is-PtCl**₂(CN CH_2Cl)₂ (12). This compound was prepared as repsted for **11** starting from (COD)PtCl, (0.37 **g,** 1.0 mmol) and CN CH2C1 (0.31 g, 2.04 mmol): yield 0.46 g (80.8%); mp 214-215 ^oC dec. Anal. Calcd or C₁₆H₁₂N₂Cl₄Pt: C, 33.76; H, 2.12; N, 4.92; Cl, 24.91. Found: C, 34.10; H, 2.12; N, 4.97; Cl, 24.64

trans-PtCl(PPh₃)₂(CHN CH₂Cl) (13). A solution of CN CH₂Cl (0.34 g, 2.25 mmol) in C_6H_6 (15 mL) was added dropwise over a period of 1 h to a suspension of trans-PtHCl(PPh₃)₂ (1.7 g, 2.25 mmol) in C_6H_6 (20 mL). The solution turned gradually orange-yellow and was stirred overnight. It was then concentrated to ca. 10 mL, $Et₂O$ (40 mL) was added and the resultant mixture was filtered. Addition of MeOH (30 mL) and evaporation under reduced pressure gave **a** cream solid, which was filtered and recrystallized from $CH_2Cl_2/MeOH$: yield 0.8 g (39%); mp 175-176 °C dec. Anal. Calcd for $C_{44}H_{37}NCl_2P_2Pt$: C, 58.22; H, 4.10; N, 1.54; **C1,** 7.81. Found: C, 57.77; H, 4.16; N, 1.37; C1, 6.93.

 $Cr(CO)_{5}$ (CN $CH_2NH-p-C_6H_4Me$) (14). A solution of 3 (0.43 g, 1.0 mmol) in DCE (10 mL) was stirred with p-toluidine (0.53 g, 5.0 mmol) at room temperature for 18 h. The solid formed (i.e. p- $MeC_6H_4NH_3^+I^-$) was filtered off and the solution taken to dryness. The residue was dissolved in the minimum amount of CH_2Cl_2 , and

the mixture was chromatographed on a silica gel column $(20 \times 2 \text{ cm})$ with $Et₂O$ as eluant. The pale yellow band was collected and evaporated to a small volume. When n-hexane (20 mL) was added, the product precipitated as a white solid, which was filtered and dried under vacuum: yield 0.22 g (53%); mp 110-112 °C. Anal. Calcd for $C_{20}H_{14}N_2O_5Cr$: C, 57.97; H, 3.40; N, 6.76. Found: C, 58.29; H, 3.51; N, 6.86.

 $W(CO)_{5}(CN^{2}CH_{2}NH_{2}P-C_{6}H_{4}Me)$ (15). This compound was obtained as for **14** starting from **4** (0.34 g, 0.61 mmol) and p-toluidine (0.32 g, 3.1 mmol) in DCE (15 mL): yield 0.15 **g** (45%); mp 122-123 °C. Anal. Calcd for $C_{20}H_{14}N_2O_5W$: C, 43.98; H, 2.58; N, 5.13. Found: C, 43.31; H, 2.53; N, 5.07.

 $Cr(CO)_{5}(CN\widehat{CH}_{2})MoCp(CO)_{3}$ (16). To a stirred solution of 3 (1.2 g, 2.75 mmol) at -78 °C was added a solution of MoCp(CO)₃ (3.3 mmol) in DME (15 mL) via a cannula. The reaction mixture was stirred at low temperature for 1 h and then slowly warmed to room temperature and stirred overnight. The orange solution was taken to dryness and extracted with C_6H_6/Et_2O (1:1 mixture, 100 mL), filtered, and evaporated to dryness. The residue was dissolved in the minimum amount of CH_2Cl_2 , and the resultant solution was chromatographed on Florisil with $Et₂O$ as eluant. The yellow band was collected and concentrated to ca. 20 mL. When n-hexane (40 mL) was added and the mixture was cooled to -15 °C, a yellow crystalline solid precipitated. It was filtered off and dried in vacuo: yield 1.2 g (79%) (based on complex 3): mp 119-120 °C. Anal. Calcd for $C_{21}H_{11}NO_8CrMo: C, 45.59; H, 2.00; N, 2.53.$ Found: C, 45.74; H, 1.98; N, 2.38. The mass spectrum showed M+ at *m/e* 555 (for $52Cr$ and $98Mo$ and peaks for $[M - n(CO)]^{+}$ $(n = 1-8)$.

W(CO)₅(CN CH₂)MoCp(CO)₃ (17). A procedure analogous to that described above using compound **4** (1.05 g, 1.85 mmol) and $MoCp(CO)₃⁻ (2.0 mmol) gave the product (0.92 g (74.3%)) as yellow$ crystals (mp 121-122 °C). Anal. Calcd for $C_{21}H_{11}NO_8W$ Mo: C, 36.81; H, 1.62; N, 2.04. Found: C, 36.30; H, 1.61; N, 2.02. The mass spectrum showed M⁺ at *m*/e 687 (for ¹⁸⁴W and ⁹⁸Mo) and peaks for $[M - n(CO)]^+$ $(n = 1-8)$.

 $W(CO)_{5}(CN^{\frown}CH_{2})WCp(CO)_{3}$ (18). The same procedure as above for **16** was used; starting from complex **4** (1.02 **g,** 1.80 mmol) and $WCp(CO)₃$ ⁻ (2.1 mmol) gave the compound as yellow crystals: 0.8 g (51.7%); mp 125-126 °C. Anal. Calcd for $C_{21}H_{11}NO_8W_2$: C, 32.63; H, 1.43; N, 1.81. Found: C, 33.30; H, 1.42; N, 1.81. The mass spectrum showed M^{+} at m/e 773 (for ¹⁸⁴W) and peaks for [M $n(CO)$ ⁺ $(n = 1-8)$.

W(CO)₅(CN CH₂)Mn(CO)₅ (19). Na/Hg prepared from Na (1.0) **g)** and Hg (10 mL) in THF (30 mL) was treated with a solution of $Mn₂(CO)₁₀$ (1.0 g, 2.8 mmol) in THF (20 mL). The mixture was vigorously stirred for 3 h, filtered through Celite, and treated dropwise over a **period** of 30 min at room temperature with a solution of complex **4** (2.8 **g,** 5.0 mmol) in THF (50 mL). The resulting red-orange solution was stirred overnight and then taken to dryness and treated with $Et₂O$ (20 mL). The insoluble cream solid was filtered and recrystallized from CH_2Cl_2/n -hexane to yield the product: 0.7 g (22%); mp 196-197 °C. Anal. Calcd for C₁₈H₆NO₁₀WMn: C, 34.04; H, 0.95; N, 2.20. Found: C, 34.59; H, 1.17; N, 2.17. The mass spectrum showed M⁺ at m/e 634 (for ¹⁸³W and ⁵⁵Mn) and peaks for [M $n({\rm CO})$ ⁺ $(n = 5{\text -}10)$.

 $Cr(\text{CO})_5(CN^\text{CH}_2)$ -trans-PtI(PPh₃)₂ (20). A solution of complex **3** (0.97 g, 2.0 mmol) in C_6H_6 (80 mL) at 5 °C was reacted with $Pt(PPh₃)₂(C₂H₄)$ (1.5 g, 2.0 mmol). The reaction mixture was warmed to room temperature and stirred overnight. It was then taken to dryness and chromatographed on a short column of silica gel (10 **X** 3 cm) with CH_2Cl_2 as eluant. The yellow band was collected and taken to dryness and the residue recrystallized twice from toluene- /n-hexane to give pale yellow crystals of the product: yield 1.2 g (51.9%); mp 174-175 °C dec. Anal. Calcd for $C_{49}H_{36}NO_5IP_2CrPt$: C, 50.97; H, 3.14; N, 1.21; I, 10.99. Found: C, 50.32; H, 3.17; N, 0.93; I, 11.25.

 $W(CO)_{5}(CN^{\dagger}CH_{2})$ -trans-PtI(PPh₃)₂ (21). This compound was prepared with a procedure analogous to that described for **20** starting from **4** (1.13 g, 2.0 mmol) and $Pt(PPh₃)₂(C₂H₄)$ (1.5 g, 2.0 mmol): yield 1.3 g (50.5%); mp 196-198 °C dec. Anal. Calcd for C₄₉H₃₆NO₅IP₂WPt: C, 45.74; H, 2.82; N, 1.08; I, 9.86. Found: C, 45.72; H, 2.83; N, 0.95; I, 10.05. Mol wt: calcd, 1286; found, 1279.

 $Cr(CO)_{5}(CN\widehat{CH}_{2})$ -trans-PdI(PPh₃)₂ (22). To a solution of Pd₂(dba)₃.2CHCl₃ (1.03 g, 1.0 mmol) in toluene (100 mL) was added PPh, (1.1 g, 4.2 mmol) and the mixture stirred at room temperature for 3 h. The solution was then cooled to -15 *OC* and complex **3** (0.87

Scheme I

g, 2.0 mmol) added. The reaction mixture was stirred at iow temperature for 1 h and then allowed to reach room temperature and stirred for **3** days. It was then taken to dryness and the residue dissolved in the minimum amount of $CH₂Cl₂$. The resulting solution was chromatographed on a short column of silica gel (10 **X** 3 cm). The eluted deep orange solution was concentrated under reduced pressure, and orange crystals were formed on addition of Et₂O: yield 0.8 ϵ (37.5%): mp 130–133 °C dec. Anal. Calcd for 0.8 **g** (37.5%) ; mp $130-133$ °C dec. C49H36N05P21CrPd: C, 55.20; H, 3.40; N, 1.3 **1;** I, 1 1.90. Found: C, 54.82; H, 3.28; N, 1.23; **I.** 11.45.

 $[PHI(PPh₃)(CN²CH₂)₂ (23).$ To a solution of $Pt(PPh₃)₂(C₂H₄)$ $(1.4 \text{ g}, 1.87 \text{ mmol})$ in toluene (100 mL) previously cooled to -15 °C was added in one portion solid CN CH₂I (0.48 g, 2.1 mmol). The reaction mixture was stirred for 1 h and then slowly warmed to room temperature and stirred for an additional 15 h. It was filtered and concentrated to ca. 20 mL and Et₂O (150 mL) added. After filtration, the orange solution was concentrated to ca. 30 mL and n -hexane (60) mL) added. The organce precipitate **formed** was filtered and dissolved in the minimum amount of C_6H_6 and the solution passed through a short column $(1 \times 7 \text{ cm})$ of Florisil. The eluted pale yellow solution was treated with MeOH to give a white solid, which was filtered and dried in vacuo: yield 0.6 **g** (42.8%); mp 163-165 "C dec. Anal. Calcd for C,,&NIPPt: C, 44.59; **H,** 3.02; N, 1.99; **I,** 18.12. Found: *c,* 44.62; H, 3.07; N, 1.71; I, 18.45. Mol wt: calcd, 1400; found, 1357.

Results and Discussion

Synthesis of Ligands. The ligands 2-(chloromethy1)- and 2-(iodomethyl)phenyl isocyanide, which will be referred to as CN CH₂Cl and CN CH₂I throughout, have been prepared as shown in Scheme I.

The first stage involves conversion of the acyl chloride to acyl azide in DMF, which has been made selective by formation of an acyl chloride-DMF complex.¹⁹ Subsequent Curtius rearrangement yields the corresponding isocyanate, which is then reduced to the formamide by $LiAlH(O-t-Bu)$, in THF at -15 *"C,* followed by treatment with HCOOH **(50%),** as reported for the reduction of other isocyanates.20 The formamide is then dehydrated with $S OCl₂/DMF$ to yield the isocyanide $CN\hat{C}H_2Cl$ with an overall yield of ca. 45%. The iodide CN $CH₂I$ is obtained from the parent chloride by metathesis with NaI in acetone (yield ca. **85%).**

These isocyanides are white, crystalline, foul-smelling, eyeand skin-irritating solids that can be easily sublimed under reduced pressure at 55-65 °C. They are soluble in most common organic solvents and are better stored under nitrogen in the cold. Their characterization has been achieved by elemental analysis and IR, ¹H, and ¹³C{¹H} NMR spectroscopy

(see Experimental Section and Tables 1-111). Typical IR features (cm⁻¹) are the $\nu(N=CC)$ (CH₂Cl₂: X = Cl, 2124 s; $X = I$, 2123 s) and ν (C-X) (Nujol mull: $X = CI$, 665 s; X = I, **570 s)** stretching frequencies (Table I).

The $CH₂X$ methylene protons show up in the ¹H NMR spectra as sharp singlets at δ 4.71 (X = Cl) and δ 4.51 (X = I) (Table II). The ${}^{13}C_1{}^{1}H_1{}$ NMR spectra (of solutions containing Cr(acac), as relaxation reagent) (Table 111) display the isocyanide carbon absorptions at ca. **168** ppm as weak signals broadened by ${}^{14}N$ coupling. The CH₂X signals undergo the usual upfield shift on going from chloride to iodide.21 **As** regards the phenyl-ring carbons, only the resonances of carbons bound to the $-NC$ and $CH₂X$ groups could be assigned with certainty. The former is also broadened by $14N$ coupling and located at higher field than the latter (cf. C – $CH₂Cl$ in benzyl chloride at δ 137.3). The other ring carbons generally resonate in the range **130-126** ppm.

Reactions Involving the Isocyanide Function. Mononuclear Complexes. The coordinating ability of the isocyano ligands that are known to yield stable metal complexes with the corresponding monodentate isocyanides. These reactions, which involve only the isocyano function, are outlined in Schemes II $(X = Cl)$ and III $(X = I)$. CN $CH₂X$ has been tested by carrying out a series of reactions

The substituted carbonyl derivatives **1-4** are produced with **70-80%** yield and are soluble in chlorinated solvents and aromatic hydrocarbons. The iodide derivatives **3** and **4** have been obtained with comparable yields from their parent chlorides also by metathesis with excess NaI in acetone. The complexes **1-4** were characterized by comparison of their IR spectral features in the NC and CO stretching regions (Table I) with those reported for analogous carbonyl-isocyanide complexes.²²⁻²⁴ The ¹H and ¹³C NMR spectra (Tables II and III) are also consistent with their formulation.^{24,25}

The mononuclear isocyanide derivatives $cis-MCl₂(PR₃)$ - $(CN\widehat{\text{CH}_2Cl}})$ (5-10) are formed with 70-80% yield. Selected diagnostic IR bands (M-Cl²⁶ and NC^{27,28} stretchings) are listed in Table **I.** Complexes **5-10** display a high reactivity of the isocyanide toward nucleophiles: e.g., they react with aromatic amines to yield amino-carbene complexes according to mechanistic pathways that are being studied.²⁹

The halide bridge splitting in $[Pt(PMePh₂)Cl₂]$, by $CN²CH₂I$ (Scheme III) leads to a mixture of products containing PtClI(PMePh₂)(CN^{CH₂Cl)</sub> (9a, major product),} $(CN\widehat{\ }CH_2I)$ (9b). It appears that chloride-iodide exchange reactions have involved both the central metal and the o -CH₂I group in the isocyanide. Identification of the mixture of these products is based on IR and NMR spectral data.30 cis -PtCl₂(PMePh₂)(CN⁻CH₂Cl) (9), and PtI₂(PMePh₂)-

- (21) Stothers, J. B. In "Organic Chemistry"; Academic Press: London, 1972; Vol. 24, p 128.
- Connors, J. A.; Jones, E. M.; McEwen, J. K.; Lloyd, M. K.; McCleverty, (22) J. A. J. *Chem.* **SOC.,** *Dalton Trans.* **1972,** 1246.
- Cotton, F. A,; Zingales, F. J. *Am. Chem. Sor.* **1961,** *83,* 351.
- Angelici, R. J.; Quick, M. H.; Kraus, G. A,; Plummer, D. T. *Inorg. Chem.* **1982,** *21,* 2178.
- Cronin, D. L.; Wilkinson, J. R.; Todd, L. J. J. *Magn. Reson.* **1975,** *17, 353.*
- (26) (a) Crociani, B.; Boschi, T.; Belluco, U. Inorg. *Chem.* **1970,** *9,* 2021. (b) Badley, E. M.; Chatt, J.; Richards, R. L. J. *Chem.* **SOC.** *A.* **1971,** 21.
- Chatt, J.; Richards, R. L.; Royston, G. H. J. *Chem. Soc., Dalton Trans.* **1973, 1433.**
- Uguagliati, P.; Crociani, B.; Calligaro, L.; Belluco, U. J. *Organomet.* (28) *Chem.* **1976,** *112,* 111.
- Uguagliati, P.; et al., results to be submitted for publication.

⁽¹⁹⁾ Homing, D. E.; Muchowski, J. M. *Can.* J. *Chem.* **1967,** *45,* 1247.

 a Nujo

Table I. IR Spectral Data

Table II. ¹H and ³¹ P 1H NMR Data^a

^a Spectra recorded in CD₂Cl₂; proton chemical shifts reported from tetramethylsilane by taking the chemical shift of dichloromethane- d_2 ^a Spectra recorded in CD₂Cl₂; proton chemical shifts reported from tetrametric + 5.32 ppm; phosphorus chemical shifts referenced to external H₃PO₄ (85%); PMe (²J(H-P) = 12.6). ^c PMe (²J(H-P) = 12.8). ^d P ${}^{2}J(H-Pt) = 85.5$, ${}^{3}J(H-P) = 8.0$. as $+5.32$ ppm; phosphorus chemical shifts referenced to external H₃PO₄ (85%); *J* in Hz; s = singlet, d = doublet, t = triplet, br = broad. PMe $(^{2}J(H-P) = 12.0, {}^{3}J(H-Pt) = 35.0).$ $e^{p}Me({}^{2}J(H-P) = 12.1, {}^{3}J(H-Pt) = 37.4).$ Me. ^{*I*} CH (²J(H-Pt) = 67.5, ³J(H-P) = 6.5). ^h Me. ^{*i*} NH. ^{*j*} Cp (η ⁵-C_sH_s). ^h ²J(H-W) = 3.4.
²J(H-Pt) = 86.0, ³J(H-P) = 8.2. ^h At -40 °C, ³J(H-P) = 7.5. ^o At -40 °C. ^{*P*} ²J(H-Pt) = $J(H-P) = 10.4$.

Table III. ¹³C ^{{1}H} NMR Spectral Data for the Ligands and Their Carbonyl Complexes^a

compd	NC	CH,	C _a H _a	Сp	CO
$o\text{-}CICH_2C_6H_4NC$ (CN CH, CI)	168.0	41.1	133.1, 129.6, 129.3, 129.1, 126.6, 125.1		
o -ICH ₂ C ₆ H ₄ NC (CN CH ₂ I)	168.6	-1.5	135.0, 129.4, 128.5, 126.8, 120.6		
$Cr(CO)$ _s $(CN$ _c CH_2Cl ₂ (1)	176.7	41.6	133.7, 130.1, 129.6, 129.0, 127.1, 126.3		215.9^{b} 213.9 ^c
$W(CO)_{5}(CN_C/H_2Cl)$ (2)	156.8	41.6	134.0, 130.0, 129.5, 129.1, 126.3		195.3 ^b 193.2 ^{c,d}
$Cr(CO)$, (CN_CCH, J) (3)	175.4	-1.8	135.4, 129.4, 129.0, 128.8, 127.2, 126.5		$215.8^{b} 214.0^{c}$
$W(CO)$, (CN_CH, I) (4)	156.6	-2.0	135.6, 129.2, 129.1, 129.0, 128.7, 126.5		195.1 ^b 193.2 ^{c,d}
$Cr(CO)$, $(CN_CCH_2)MoCp(CO)$, (16)	171.2	-3.1	148.8, 128.5, 128.1, 126.1, 123.6	93.0	238.0 ^e 227.6 ^t 216.4 ^g $214.3h$
$W(CO)_{5}(CN_CCH_2)MoCp(CO)_{5}(17)$		-3.0	149.4, 128.8, 128.1, 126.3, 123.7, 123.5	93.1	238.0 ^e 227.7 ^f 195.9 ^j 193.8 ^{d,k}
$W(CO)$, $(CN_CH_2)WCp(CO)$, (18)		-15.0	149.6, 128.8, 128.1, 126.3, 123.8	91.7	226.5 , l 218.0, m 195.9, j 193.8 k
$W(CO)_{s}(CN \tilde{C}H_{2})Mn(CO)_{s}(19)$		4.4	149.0, 129.1, 127.6, 124.0, 123.9		210.0 , ⁿ 196.0, ^j 199.7 ^{d,k}
			^a Spectra run in CDCl ₃ as solvent; chemical shifts reported from Me _a Si by taking the chemical shift of chloroform-d as +77.0 ppm; <i>J</i> in Hz. b_{Trans} co c_{max} a_{max} d_{max} d_{max} e_{max} e_{max} e_{max} c_{max}		

a Spectra run in CDCl₃ as solvent; chemical shifts reported from Me₄Si by taking the chemical shift of chloroform-d as +77.0 ppm; J in Hz
b Trans CO. ^c Cis CO. ^d ¹J(¹⁸³W-cis CO) = 126. ^e Mo(CO)₃ unit; CO t to CH₂. ^m W(CO), unit; CO cis to CH₂. ⁿ Mn(CO), unit, broad signal.

The bis(isocyanide) complexes **11** and **12** are produced with *80-90%* yield. Owing probably to the mutual influence of cis isocyanides, the $\nu(NC)$ stretchings undergo the highest increase on coordination observed in this series of functional isocyanide complexes, suggesting a very high electrophilic character for the isocyanide carbon^{26a} (Table I).

These functionalized isocyanides undergo other typical reactions of the **NC** group such as insertion into the Pt-H bond yielding formimidoyl complexes. The insertion product **13** shows IR and NMR features (Tables I-III) typical of these derivatives, inclusive of syn-anti isomerism. 31

Reactions Involving the Halomethyl Function. Binuclear Complexes. The mononuclear complexes **3** and **4** display a

⁽³⁰⁾ Compound 9: its presence is confirmed by comparison with data of an independently prepared sample (see Tables I and II and Experimental Section). Compound 9a: IR (Nujol) $\nu(N \equiv C)$ 2185 s, $\nu(C-C1)$ 673 m, $\nu(Pt-C1)$ 33 (CD₂C1₂/H₃PO₄ (85%)) δ 0.45 (^IJ(P-Pt) = 3089 Hz). Compound **9b**:
IR (Nujol) ν (N=C) 2190 **s** cm⁻¹; ¹H NMR (CD₂C1₂) δ 4.49 **s** (CH₂), NMR $(CD_2Cl_2/H_3PO_4$ (85%)) δ -5.48 (¹ $J(P-Pt)$ = 3063 Hz). This derivative was prepared and isolated independently by reaction **of** *9* with excess NaI in acetone. $(\dot{P}-CH_3, {}^2J(H-P) = 12.0 \text{ Hz}, {}^3J(H-\dot{P}t) = 35.2 \text{ Hz}; {}^{31}\dot{P}^{\{1\}}_1H$ NMR δ 2.68 d (P-CH₃, ² $J(H-P) = 11.6$ Hz, ³ $J(H-Pt) = 37.8$ Hz; ³¹P[¹H]

⁽³¹⁾ Christian, D. F.; Clark, H. C.; Stepaniak, R. F. *J. Orgunomet. Chem.* **1976,** *112,* 209.

selective reactivity of the o -CH₂I group toward aromatic amines, undergoing nucleophilic substitution of the iodide *(eq* 1). Under these experimental conditions, the carbonyl and

the isocyanide ligands are not attacked by the amine. The resulting products **14** and **15** can be looked at as novel organometallic functional isocyanides in which the dangling o-aminobenzyl function may potentially undergo further reactions. Thus, Dreiding molecular models indicate that the secondary amino goup in these derivatives might be in a favorable position to interact, at least in principle, with the coordinated isocyanide function to give intramolecularly cyclic ^H*r* amino-carbene species:

However, prolonged heating of **14** and **15** in n-heptane gave no evidence for the occurrence of such a reaction. This is in agreement with what was previously observed in the case of Cr and W complexes with hydroxyalkyl isocyanides, which only gave "open-chain" stable isocyanide derivatives with no tendency to cyclize via the free hydroxo function.' By contrast, cyclic carbenes are easily formed when such isocyanides are activated by coordination to metals such as Pd^{2+} , Pt^{2+} , Zn^{2+} and Au^{3+1} . It appears therefore that the favorable special arrangement of the isocyanide and substituted amine functions in **14** and **15** is not backed up by sufficient activation of the isocyanide carbon toward nucleophilic attack, as is also reisocyanide carbon toward nucleophilic attack, as is also re-
flected by the low value of $\Delta \nu = \nu(N=CC)_{\text{coord}} - \nu(N=CC)_{\text{free}}^{27}$ (ca. 10 cm⁻¹, Table I). The inertness of the $-N=$ C group toward nucleophiles **is** also borne out by the selectivity of the reactions of precursors **3** and **4** with aromatic amines.

The iodomethyl function in mononuclear complexes **3** and **4** displays the typical reactivity toward metal carbonyl anions that leads to novel M-C σ bonds. Since the o -CH₂I group is linked to an already metal-coordinated isocyanide moiety, either homo- or heterobinuclear derivatives are obtained, depending on the metal anion employed (Scheme IV).

Complexes **3** and **4** react with anions of the type M'Cp- $(CO)₃⁻$ (M = Mo, W; Cp = η^5 -C₅H₅) in DME to form the corresponding σ -benzyl complexes 16-18 with 50-80% yield. The reaction of 4 with $Mn(CO)$ ₅ in THF affords complex 19 with 22% yield.

The IR spectra of **16-19** in the terminal CO stretching region match closely those reported for similar carbonyl configurations.³²⁻³⁵ In the ¹H NMR spectra, the methylene proton signal is markedly shifted upfield upon formation of the new metal-benzyl σ bond. The observed values (Table 11) agree with those previously reported for benzyl groups linked to transition metals.³²⁻³⁵ In the homobinuclear complex **18** the CH₂ protons are coupled with ¹⁸³W $(I = \frac{1}{2}, 14\%$ natural abundance; $^{2}J(H-W) = 3.4 \text{ Hz}$). The presence of two metal-carbonyl systems in quite distinct chemical environments in binuclear complexes **16-18** is clearly shown by the carbonyl $13C$ NMR spectra (Table III). The "piano stool" geometry of the M'Cp(CO)₃R group $[R = o\text{-CH}_2C_6H_4NCM(CO)_5]$ in complexes **16-18** gives rise to two carbonyl resonances, one assigned to the \overline{CO} trans to \overline{CH}_2 (downfield) and the other to the CO's cis to CH_2 (upfield) in the spectral range 218-238 ppm, which is normal for compounds of this type containing an alkyl group.³⁶ The carbonyl resonances of the $M(CO)$ ₅ group do not differ significantly from those found in the mononuclear compounds $M(CO)_{5}(CN^{\dagger}CH_{2}X)$. In the case of the Mn(CO), group **(19)** the carbonyl signal is broadened by ⁵⁵Mn $(I = \frac{5}{2}$, 100% natural abundance) as observed also for $Mn(CO)_{5}CH_{2}^{2}Ph.^{37}$ The methylene carbon chemical shifts

- **(32) King, R. B.; Fronzaglia, A. J.** *Am. Chem. SOC.* **1966,** *88,* **709.**
- **(33) Klein, B.; Kazlauskas, R. J.; Wrighton, M. S.** *Orgunomefullics* **1982,** *1,* **1338.**
- **(34) Drew, D.; Darensbourg, M. Y.; Darensbourg, D. J. J.** *Orgunomer. Chem.* **1975,85, 13.**
- **(35) Boschi, T.; Campesan, G.; Ros, R.; Roulet, R.** *J. Orgunomer. Chem.* **1977,** *136,* **39.**
- **(36) Mann, B. E.; Taylor, B. F. in '"C NMR Data for Organometallic Compounds"; Academic Press: London, 198 1.**
- **(37) Todd, L. J.; Wilkinson, J. R. J.** *Orgunomer. Chem.* **1974,** *80,* **C31.**

Scheme 111

are in the range $+4$ to -15 ppm, with an upfield shift going from Mn through Mo to W. Other typical $^{13}CH_2$ resonances are as follows: $[W(CO)_5CH_2Ph]^-$, δ 4.7;³⁸ $Mn(CO)_5CH_2Ph$, δ 8.7;³⁷ MoCp(CO)₃CH₂Me, δ -3.9;⁴⁰ WCp(CO)₃Me, δ $-35.1;^{39}$ WCp(CO)₃CH₂CH=CH₂, δ -6.6.⁴¹ The chemical shift of the phenyl carbon directly bound to the methylene group undergoes a marked upfield shift (ca. 10 ppm) upon coordination of the α -CH₂ to the transition metal in compounds **16-19** (see first column under the heading **"C6H4"** in Table 111). **A** similar shift has been reported for this phenyl carbon in the benzyl complex $Mn(CO)$, CH₂Ph. (δ 151.0 vs. δ 137.3 for benzyl chloride).³⁷ Consistent with the above described formulations, the mass spectra of the binuclear complexes **16-19** showed the M" parent ion corresponding to the molecular weight of the complex, the identification of

Scheme V

which was supported also by "fingerprint" mass spectral simulation.

Heterobinuclear complexes have been also prepared by oxidative addition of the 0-CH21 moiety in compounds **3** and **4** to low-valent Pd and Pt complexes with formation of new σ bonds (Scheme IV, complexes 20-22). The trans squareplanar geometry of the PtI(PPh₃)₂CH₂ moiety in 20 and 21 is clearly indicated by ¹H and ³¹P NMR data (Table II). The methylene resonance is split into a triplet **(1:2:1)** by two

⁽³⁸⁾ Casey, C. P.; Polichnowski, S. W. J. Am. Chem. Soc. 1978, 100, 7565.
(39) Todd, L. J.; Wilkinson, J. R.; Hickey, J. P.; Beach, D. L.; Barnett, K.
W. J. Organomet. Chem. 1978, 154, 151.

⁽⁴⁰⁾ Braun, *S.;* **Dahler, P.; Eilbracht, P.** *J. Organomet. Chem.* **1968,** *146,* **135.**

⁽⁴¹⁾ Kohler, F. H.; Kalder, H. T.; Fischer, E. 0. *J. Organomet. Chem.* **1975,** *85,* **C19.**

Functionalized Isocyanides as Ligands

eqivalent phosphorus atoms with satellites due to coupling with $193Pt$, and the single $31P$ resonance is also split into a triplet $(1:4:1)$ by ¹⁹⁵Pt. The trans arrangement of the Pd fragment in complex **22** is suggested by the methylene signal multiplicity (triplet by coupling with phosphorus nuclei) in the 'H NMR spectrum and by the presence of the phosphorus singlet in the ³¹P spectrum.

It is noteworthy that the ability to undergo oxidative addition is featured also by the free functionalized isocyanide o -ICH₂C₆H₄NC that reacts with Pt(PPh₃)₂(C₂H₄) in toluene to give complex **23** (Scheme **V).** This reaction may involve, in principle, displacement of ethylene by isocyanide, oxidative addition, and PPh₃ elimination.

The intermediate Pt(0)-isocyanide species Pt(PPh₃)₂- $(CN\widehat{\ }CH_2I)$ could not be isolated; however, mixed isocyanide-phosphine $Pt(0)$ derivatives have been previously described⁴² and shown to undergo oxidative addition with alkyl halides to yield Pt(I1) species.

Complex **23** has been characterized by elemental analysis, molecular weight measurement, and IR and NMR spectroscopy. The IR spectrum shows a strong **v(N=L)** band at 2170 cm^{-1} , which is typical for a Pt(II)-coordinated isocyanide (cf. complexes 8-10). The *trans*-CH₂PtPPh₃ arrangement is deduced by the presence of a singlet (flanked by ¹⁹⁵Pt satellites) in the ³¹P NMR spectrum, with a very low $\frac{1}{J(P-Pt)}$ value, as expected for a phosphine ligand trans to a σ -alkyl group.⁴³ Consistently, the $3J(H-P)$ value of 10.4 Hz in the ¹H NMR spectrum falls in the range usually observed for Pt(I1) complexes with mutually trans alkyl and phosphine ligands.^{11e}

Conclusion

The functionalized isocyanides described in this paper did

(43) Pidcock, A,; Richards, R. E.; Venanzi, L. M. *J. Chem. Soc.* **1966,1707.**

show the reactivity peculiar to each function. The coordinating ability of the isocyanide function afforded mononuclear complexes of $Cr(0)$, $W(0)$, $Pd(II)$, and $Pt(II)$. In some of these derivatives the free **CH2X** function has been exploited to prepare other mononuclear complexes as well as new homoand heterobinuclear species involving new M-C σ bonds. In such a way it was possible to hold in the same complex two metal centers even with very different electronic configurations and/or chemical environments. Such binuclear complexes are susceptible to further studies on possible cooperative effects between the two central metals in reactions involving the two functional groups such as the insertion of the isocyanide across the M-C σ bond. We are carrying out studies on the replacement of the halide in the CH_2X function with other functional substituents such as OH, NHR, SH, etc. with the aim of effecting intramolecular attack at the coordinated isocyanide leading to novel cyclic carbene complexes.

Acknowledgment. We thank Prof. **B.** Corain of the University of Padua for providing the mass spectra.

Registry No. 1, 88656-97-7; **2,** 88656-98-8; **3,** 88656-99-9; **4,** 88657-00-5; **5,** 88728-22-7; **6,** 88728-82-9; **7,** 88728-23-8; **8,** 88657-01-6; **9,** 88657-02-7; **10,** 88657-03-8; **11,** 88657-04-9; **12,** 88657-05-0; **13,** 88657-06-1; **14,** 88657-07-2; **15,** 88657-08-3; **16,** 88657-09-4; **17,** 88657-10-7; **18,** 88657-1 1-8; **19,** 88657-12-9; **20,** 88657-13-0; **21,** 88657-14-1; **22,** 88657-15-2; **23,** 88657-16-3; $[NEt_4]$, 14780-98-4; $[W(CO), I][NEt_4]$, 14781-01-2; $[Pd-$ PtCl₂, 12080-32-9; trans-PtHCl(PPh₃)₂, 16841-99-9; MoCp(CO)₃⁻, CN CH₂Cl, 88644-59-1; CN CH₂Cl, 88644-60-4; [Cr(CO)₅I]- $(PMePh₂)Cl₂$]₂, 29887-90-9; PdCl₂(MeCN)₂, 13869-38-0; (COD)-12 12 6- 18-0; WCp(CO)₃, 12 12 6- 17-9; $Mn_2(CO)_{10}$, 10 170-69-1; Pt- $(PPh₃)(C₂H₄),$ 12120-15-9; Pd₂(dba)₃, 51364-51-3; 2-(chloromethy1)benzoyl azide, 88644-6 1-5; 2-(chloromethyl)benzoyl chloride, 42908-86-1; 2-(chloromethy1)phenyl isocyanate, 52986-66-0; (2- **(chloromethyl)phenyl)formamide,** 88644-62-6.

⁽⁴²⁾ Larkin, **G. A.;** Mason, R.; Wallbridge, M. G. **H.** *J. Chem. Soc., Dalton Trans.* **1975, 2305.**